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Abstract
The uniqueness problem in the localization of some rigid structural elements is
studied using constraints available for proteins containing paramagnetic metal
ions. The degeneracy arising with a single set of data is investigated, and
uniqueness is restored using multiple magnetic tensors. An efficient numerical
strategy to deal with multiple datasets is presented.
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Mathematics Subject Classification: 92E10, 65K05, 51N20

1. Introduction

The availability of genomic data has created a need for rapid and efficient determination of the
three-dimensional structures of the corresponding proteins. It is in fact commonly accepted
that each protein has a unique fold. No theoretical method is presently available to obtain the
fold from the knowledge of the sequence of amino acids which constitute the protein. It has
been estimated that about one-third of all proteins contain at least one metal ion inside. A
new class of NMR structural constraints can be obtained for proteins containing paramagnetic
metal ions: the paramagnetism-based constraints [1]. They are: paramagnetic relaxation rates
[2], contact shifts [2], pseudocontact shifts [3], self-orientation residual dipolar couplings [4]
and cross correlations (between Curie relaxation and dipolar relaxation) [5]. In this paper
we focus only on pseudocontact shifts and residual dipolar couplings, because among the
paramagnetic constraints they provide the best source of information as structural constraints
in terms of the number of data available and accuracy of measurements.

The pseudocontact shifts (PCS) δ
pcs

i arise in the presence of an anisotropic magnetic
susceptibility tensor as the rotational average of the dipolar coupling between the magnetic

0305-4470/02/398153+17$30.00 © 2002 IOP Publishing Ltd Printed in the UK 8153

http://stacks.iop.org/ja/35/8153


8154 M Longinetti et al

moment of the unpaired electron(s) and the magnetic moment of the resonating nuclei (in the
metal-centred point-dipole–point-dipole approximation) [2]. They depend on the magnetic
susceptibility tensor χ and on the atomic coordinates according to the following equation [6]:

δ
pcs

i = Cpcs

r5
i

[(
χzz − tr(χ)

3

) (
2z2

i − x2
i − y2

i

)
+ (χxx − χyy)

(
x2

i − y2
i

)
+ 4χxyxiyi + 4χxzxizi + 4χyzyizi

]
(1.1)

where Cpcs is a constant,

χ =

χxx χxy χxz

χxy χyy χyz

χxz χyz χzz




is the magnetic susceptibility tensor of the metal ion, (xi, yi , zi) are the differences between
the coordinates of atom i and the coordinates of the metal ion, and ri =

√
x2

i + y2
i + z2

i .
The residual dipolar couplings (RDC) δrdc

ab are due to the induced partial orientation
in high magnetic field caused by the anisotropy of the magnetic susceptibility tensor. This
prevents the dipolar coupling energies from averaging to zero for all the pairs of atoms of the
protein. They depend on the magnetic susceptibility tensor χ and on the atomic coordinates
according to the following equation [4]:

δrdc
ab = Crdc

r5
ab

[(
χzz − tr(χ)

3

) (
2z2

ab − x2
ab − y2

ab

)
+ (χxx − χyy)

(
x2

ab − y2
ab

)
+ 4χxyxabyab + 4χxzxabzab + 4χyzyabzab

]
(1.2)

where Crdc is a constant, (xab, yab, zab) are the differences between the coordinates of selected
pairs of atoms a and b, and rab =

√
x2

ab + y2
ab + z2

ab. RDC are usually measured for the NH
pairs and for the CαHα, CαCβ, CαC, CHα pairs in 13C-enriched samples.

For many metalloproteins it is possible to substitute the metal ion contained inside with a
different one. Furthermore, some proteins contain two or more locations where a paramagnetic
metal ion can be found. In these cases more than one set of PCS and RDC can be obtained,
as different metal ions determine different paramagnetic susceptibility tensors [7, 8]. The
removal of the metal ion present in the binding site may cause conformational modifications.
These should be, however, limited by substituting the metal ion with a different one, having
the same charge [9].

PCS and RDC can be used to determine the protein structure. The components of the
tensor χ and the coordinates of protein atoms must thus be obtained by using equations (1.1)
and (1.2) from the values of δ

pcs

i and δrdc
ab . This problem cannot be solved in general without

further assumptions, because usually the number of unknowns is much larger than the number
of data. A possible approach to reduce the number of unknowns is to consider protein rigid
structural elements, or rigid fragments. By rigid structural elements we mean all protein
fragments for which the structure is known. They can be (i) protein domains with three-
dimensional structure already obtained in previous studies, in cases with conformational
ambiguity due to the lack of NOE [10] between the domains of multidomain proteins,
(ii) elements of the secondary structure (α-helix or β-sheet), (iii) the tetrahedrally arranged
atoms centred on the Cα atom of single amino acids, or the CONH peptide planes. The idea
of modelling the proteins in terms of rigid structural elements has recently been exploited in
connection with the use of residual dipolar couplings induced by external anisotropic media
[11–19]. These rigid structural elements may easily be modelled in an arbitrary reference frame
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from the knowledge of all atom chemical bonds and dihedral angles. Using this approach, the
problem reduces to the determination of the relative position of rigid structural elements.

The problem of finding the relative position of several rigid structural elements through
the use of paramagnetism-based constraints has been recently addressed within the frame
of experimental structural genomic projects carried out at the Centre of Magnetic Resonance
(CERM) of the University of Florence. The determination of the spatial positions of α-helices,
considered as rigid structures, has been studied in [20] through the use of the following
paramagnetic data: pseudocontact shifts, residual dipolar couplings and Curie dipole–dipole
cross correlations.

In this paper we provide a detailed mathematical analysis of the problem of assembling
rigid structural elements through the use of PCS and RDC. In section 2.1 the mathematical
model is presented, and the uniqueness and degeneracy of the solution using data obtained in
the presence of a single metal ion are analysed. In section 2.2 a complete mathematical proof
is given of how uniqueness can be restored using data obtained in the presence of different
metal ions substituted in the same or in different binding sites. As already mentioned, the idea
of restoring the uniqueness using multiple metal ions has already been exploited in the cited
literature. However, the precise conditions have not been fully stated, and a mathematical
proof is missing. Section 2 of this paper fills this gap. We then give a mathematical basis for
a numerical approach that has already been successfully implemented in [20] (section 3) and
finally we show how this approach works using simulated data (section 4).

2. Mathematical analysis

2.1. Mathematical model and single metal problem

We denote the rigid structural elements by αj , j = 1, . . . , n. Let xi,j be the position vector
of the ith atom of αj in an arbitrary reference system (the lab frame). Xj = {xi,j } is the
representation of αj in the lab frame. The representations Xj , j = 1, . . . , n are known. The
aim is to reconstruct the spatial positions of the αj with respect to a metal ion M contained in
the protein, but not belonging to any αj . The metal system is a privileged Cartesian system
with origin at M and axes coinciding with the principal directions of the tensor χ of M. It is
easy to see from (1.1) and (1.2) that the values of δ

pcs

i and δrdc
ab do not depend on the trace of

χ , but only on the five parameters defining the anisotropic part of χ , which is χ − (tr(χ)/3)I .
Therefore we assume tr(χ) = 0 because it cannot be determined from (1.1) and (1.2). The
metal system is a good choice for representing the relative spatial positions of αj . With this
choice, χ is in diagonal form. The dependence of δ

pcs

i and δrdc
ab on χ is only in the magnetic

susceptibility anisotropy coefficients [21]:

�χax = λ3 − λ1 + λ2

2
�χrh = λ1 − λ2

where λ1, λ2, λ3 are the eigenvalues of χ in increasing order. The representation of αj in
the metal system is found by applying a rigid motion Rj to Xj . Rj is the composition of a
translation tj and a rotation aj , and Rj (Xj) = aj (Xj − tj ) is the location of αj with respect
to M. Any rotation matrix aj may be represented by three Euler angles [22]. With a slight
abuse we will call aj both the 3 × 3 rotation matrix and the three Euler angles. The translation
tj is represented by a vector in R

3, the location of the metal ion in the lab frame being tj .
The rigid motion Rj is then represented by (aj , tj ), depending on six parameters. This rigid
motion is all we need to reconstruct the spatial position of αj with respect to the metal system.
The only other values that are needed to fully reconstruct the tensor χ are the anisotropy
coefficients �χax,�χrh. Our unknowns are then the 6n + 2 variables: (aj , tj ), j = 1, . . . , n



8156 M Longinetti et al

M1 

M2

Figure 1. A manifold for which the uniqueness is lost. If all atoms (for which PCS is known) lie
on this manifold, it is not possible to distinguish the two locations M1 and M2 for the position of
the metal ion.

and �χax,�χrh. We will call these variables (and also a set of values taken by these variables)
a configuration.

On the other hand, the available measurements are values δ̃
pcs

i and δ̃rdc
ab . We suppose that

the problem of assignment is already solved, i.e. we know to which atoms of the chemical
structure of αj these values correspond. As already mentioned in the introduction, there may
be measurements relative to more than one metal (a different metal ion and/or a different
binding site). We will call a dataset the measurements relative to both a single metal ion and
a single location.

If a configuration is known, the αj can be positioned in the metal system, and �χax,�χrh

are known, therefore it is possible to compute δ
pcs

i and δrdc
ab from formulae (1.1) and (1.2). A

solution is a configuration such that δ̃
pcs

i = δ
pcs

i and δ̃rdc
ab = δrdc

ab for every measurement in the
dataset.

The tensor χ and the translations tj may be found by (1.1) and (1.2), if enough
measurements δ̃

pcs

i and δ̃rdc
ab are available. First we can determine χ from (1.2) solving a

linear system because RDC do not depend on the position of the metal. Once χ is known,
we can use (1.1) to uniquely determine tj , unless the following situation occurs. Given any
vector t̄j �= tj we can explicitly determine a non-empty manifold in R

3. If all atoms (for which
δ̃

pcs

i is known) lie on this manifold, tj and t̄j are both solutions for the location of the metal
ion. Uniqueness is then lost. Figure 1 is a picture of such a manifold. The appendix contains
a proof in terms of elementary geometry that these manifolds are always non-empty.

We will always suppose that both χ and the translations tj are uniquely determined. The
problem of positioning the αj is however not fully solved. In fact the tensor χ identifies the
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metal system only up to reflections of the coordinate axes. For each αj an orientation choice has
to be made. The first choice is arbitrary, and corresponds to a global choice in the orientation of
the metal system. The subsequent choices influence, however, the relative positions of the αj .
In terms of transformations, suppose that any rigid motion (aj , tj ) contained in a configuration
is replaced by (sτ aj , tj ), where sτ is a 180◦ rotation with respect to the τ coordinate axis,
τ = 1, 2, 3. In the metal system the rotations sτ are represented by diagonal matrices with 1 in
element ττ , and −1 in the remaining diagonal elements, thus changing only the signs of two
coordinates. It follows that the values computed from (1.1) and (1.2) do not change, because
(1.1) and (1.2) contain only the squares of the coordinates when χ is in diagonal form. It
is convenient to include also the identity s0. We call these rotations sτ , τ = 0, . . . , 3 axial
symmetries because they are also symmetries with respect to the τ axis. We only consider the
reflections that are rotations, otherwise a mirror copy of αj is obtained. The mirror copy has
opposite chirality, so it cannot be accepted. For each αj , j = 1, . . . , n, there are therefore
four possible choices which can be combined to obtain 4n possibilities. They reduce to 4n−1

different combinations because the global choice of orientation is arbitrary.

2.2. Multiple metals problem

Data from different metal ions can be available [8]. This suggests considering multiple
datasets to find a unique configuration. Let Dk , k = 1, . . . ,m be datasets, corresponding
to metal ions Mk. Each Dk produces a solution Ck = {(

ak
j , t

k
j

)
,�χk

ax,�χk
rh

}
with the

axial symmetry ambiguity seen above. However, these configurations must be assembled to
find a global solution, so they must be mutually consistent. In other words, for each k1, k2

there must exist a rigid motion Rk1k2 such that
(
a

k2
j , t

k2
j

) = Rk1k2
(
a

k1
j , t

k1
j

)
, ∀j . A solution

� = {Ck, k = 1, . . . ,m} of the multiple metals problem is then a set of mutually consistent
solutions of the single metal problems.

Two global solutions may represent the same molecule. This is stated in the following
definition.

Definition 2.1. � = {Ck, k = 1, . . . ,m} and �̃ = {C̃k, k = 1, . . . ,m} are equivalent if:

(i) �χk
ax = �χ̃k

ax and �χk
rh = �χ̃k

rh, k = 1, . . . ,m.
(ii) tkj = t̃ kj , k = 1, . . . ,m, j = 1, . . . , n.

(iii) For every k = 1, . . . ,m there exists an axial symmetry sk such that ãk
j = skak

j , ∀j .

Remarks. Conditions (i) and (ii) imply that the anisotropy coefficients and the locations of
the metal ions are correctly identified. Condition (iii) is necessary because of the reflection
ambiguity of the tensors χk . For each k there is an arbitrary choice for the orientation of the
tensor. This choice corresponds to the choice of sk of condition (iii). The symmetry sk does
not depend on the rigid structural elements αj because the two solutions represent the same
physical molecule.

Definition 2.2. Let M1 and M2 be two metal systems. We say that the metal systems are
collinear if at least one of the lines identified by the coordinate axes of M1 coincides with one
of the lines identified by the coordinate axes of M2.

Remarks. The collinearity of M1 and M2 is not changed if an axial symmetry is applied to any
of the metal systems (i.e. if a different orientation choice is made). This is why definition 2.2
is given in terms of lines and not of axes. The coincidence of the origin of the metal systems
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Figure 2. Collinear and non-collinear systems.

is not relevant for definition 2.2. The geometrical meaning is however slightly different (see
figure 2 for examples):

(a) If M1 and M2 are in the same location, they are not collinear if and only if their tensors
have no eigenvectors in common. This condition has already been stated in [23] for the
RDC case.

(b) If M1 and M2 are in different locations, they are not collinear if and only if the distance
vector M1M2 is not an eigenvector of both the metal tensors.

Theorem 2.1. Let � be a solution of the multiple metals problem, with at least two non-
collinear metal systems Mk1 and Mk2 . Then, � is unique up to equivalent sets of configurations.

The proof of the theorem needs the following lemmas.

Lemma 2.1. Let sτ and sσ be any two axial symmetries. Let Tτσ be the 16 matrices with
elements (Tτσ )ij = (sτ )ii (sσ )jj . Then Tτσ are represented by the following classification:

(a) T00 is the matrix with all elements equal to 1.
(b) T0σ , σ �= 0 is the matrix with elements 1 in column σ , and with elements −1 in the other

columns.
(c) Tτ0, τ �= 0 is the matrix with elements 1 in row τ , and with elements −1 in the other rows.
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(d) Tτσ , σ �= 0, τ �= 0 is a matrix with 1 in element (τ, σ ), −1 in the other elements of row τ

and column σ , and 1 in the remaining elements.

Proof. An axial symmetry sτ is represented by a diagonal matrix with elements ±1, and
with an odd number of elements equal to +1. The proof follows by elementary exhaustive
computation of all the 16 matrices Tτσ . �

Lemma 2.2. Let {e1, e2, e3} be the canonical basis of R
3. A rotation matrix R transforms ei

in ±ej if and only if the matrix representing R has two elements equal to 0 in the same column
or in the same row.

Proof. Let rij be the elements of the matrix R. Then Rei = ±ej is equivalent to rij = ±1.
The column and the row vectors of a rotation matrix have Euclidean norm 1, so rij = ±1
implies that the other elements of row i and column j are 0. �

Remark. The rotations connecting two tensors having an eigenvector in common are
represented by matrices R having the previous property. The rotations not satisfying this
property are called oblique. Definition 2.2 implies that the rotation connecting two non-
collinear metal systems with the same origin is oblique.

Lemma 2.3. Let R and R̃ be two given oblique rotations satisfying R̃sσ = sτR. Then sσ and
sτ are uniquely determined.

Proof. In terms of matrix elements the identity R̃ = sτ Rsσ is equivalent to

r̃ij = rij (sσ )ii (sτ )jj i, j = 1, . . . , 3.

The matrix Tτσ with elements (Tτσ )ij = (sτ )ii (sσ )jj is one of the 16 matrices of
lemma 2.1. The element (Tτσ )ij can be determined from the previous equation if and only
if rij �= 0. From lemma 2.2 it follows that the maximal number of vanishing elements in R
is three, with no more than one element equal to 0 in the same column and in the same row.
Therefore, all the elements of Tτσ are determined except for the three undetermined elements
corresponding to the zero elements of R. Let T be any of the 96 = 6 × 16 matrices with
undetermined elements obtained by Tτσ . A complete classification of T may be derived from
the classification of Tτσ in lemma 2.1. The indices τ and σ can be identified by T, as shown
by the following argument:

(A) If all the determined elements of T are equal to 1, then T agrees with a matrix (with
undetermined elements) of case (a) in lemma 2.1, and it does not agree with cases (b)–(d).
Hence τ = 0 and σ = 0.

(B) If T has two columns containing elements −1 and the remaining elements are 1, then T
agrees with a matrix (with undetermined elements) of case (b) in lemma 2.1. Any matrix
coming from the remaining cases (a), (c) and (d) does not satisfy this property, so τ = 0,
and σ is the index of the column containing 1.

(C) If T has two rows containing elements −1 and the remaining elements are 1, then with a
similar argument as in case (B), σ = 0, and τ is the index of the row containing 1.

(D) If the only elements of T equal to −1 fill a single row and a single column, except the
crossing element which is 1 (if determined), then T agrees with case (d) of lemma 2.1.
This property is not verified by matrices (with undetermined elements) coming from the
other cases, so τ and σ are the indices of the crossing element.
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The same argument applies of course if the number of vanishing elements of T is less than
three. Then τ and σ , and so sτ and sσ , can be uniquely determined. �

Proof of theorem. Let � = {Ck, k = 1, . . . ,m} and �̃ = {C̃k, k = 1, . . . ,m} be two
solutions of the same multiple metals problem. We will show that � and �̃ are equivalent.
Properties (i) and (ii) follow from the uniqueness of the magnetic tensor and location of the
metal ion as shown in section 2.1. To prove (iii), assume for simplicity that k1 = 1 and k2 = 2.
Let C1 = {(

sτj
a1

j , t
1
j

)
,�χ1

ax,�χ1
rh

}
and C̃1 = {(

s̃τj
ã1

j , t
1
j

)
,�χ1

ax,�χ1
rh

}
. Both C1 and C̃1

are solutions of D1, hence

ã1
j = s1

j a
1
j (2.1)

for suitable symmetries s1
j . Similarly, by considering C2 and C̃2

ã2
j = s2

j a
2
j . (2.2)

Since C1 and C2 are mutually consistent, there exists R12 such that(
a2

j , t
2
j

) = R12 (
a1

j , t
1
j

)
. (2.3)

Analogously, there exists R̃12 such that(
ã2

j , t
2
j

) = R̃12
(
ã1

j , t
1
j

)
. (2.4)

Suppose the location of M1 and M2 is the same. Then t1
j = t2

j , so R12 and R̃12 are rotations,
and we will drop the translation part of the notation. Substituting (2.3) and (2.4) in (2.2) yields
R̃12ã1

j = s2
j R

12a1
j . Substituting (2.1) in the previous formula gives R̃12s1

j a
1
j = s2

j R
12a1

j , and
so R̃12s1

j = s2
j R

12. The rotation matrices R12 and R̃12 are oblique because M1 and M2 are not
collinear. They do not depend on j, so from lemma 2.3 s1

j = s1 and s2
j = s2 are the uniquely

determined symmetries that fulfil property (iii) because of (2.1) and (2.2). This concludes the
proof of theorem 2.1 in the case the location of M1 and M2 is the same.

Suppose the location of M1 is different from that of M2. Then R12 = (A12, T 12) and
R̃12 = (Ã12, T̃ 12). From (2.3) and (2.4) we have

a2
j

(
x − t2

j

) = A12
(
a1

j

(
x − t1

j

) − T 12
)

ã2
j

(
x − t2

j

) = Ã12
(
ã1

j

(
x − t1

j

) − T̃ 12
) ∀x ∈ R

3.

From the previous equation, we obtain

A12 = a2
j

(
a1

j

)∗
Ã12 = ã2

j

(
ã1

j

)∗
(2.5)

where an asterisk denotes the inverse of a rotation. Then

T 12 = a1
j

(
t2
j − t1

j

)
T̃ 12 = ã1

j

(
t2
j − t1

j

)
.

Applying (2.1) we get

T̃ 12 = s1
j T

12. (2.6)

The distance vector T 12 represents the coordinates of M2 in the metal system M1. Since M1

is not collinear with M2, T 12 is not an eigenvector of both tensors. Switching M1 and M2

if necessary, we can assume that T 12 is not an eigenvector of the tensor of M1. It follows
that T 12 is a vector with at least two non-vanishing components. This suffices to uniquely
identify from (2.6) the axial symmetry s1

j . Thus s1 = s1
j does not depend on j. Eliminating

a1
j , a

2
j , ã

1
j , ã

2
j from (2.1), (2.2), (2.5) we get Ã12s1

j = s2
j A

12. Since s1
j does not depend on j,

the same holds for s2
j = s2. Then s1 and s2 are the uniquely determined symmetries that fulfil

property (iii) because of (2.1) and (2.2). This concludes the proof of theorem 2.1. �
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3. Numerical approach

3.1. Introduction

Here we describe a strategy that has been successfully used in [20] to reconstruct the positions
of the αj with respect to the metal ions using experimental data. This has been done by
minimizing a target function (TF ) having the following expression:

TF =
∑

i

(
δ

pcs

i − δ̃
pcs

i

)2
+

∑
ab

(
δrdc
ab − δ̃rdc

ab

)2
. (3.1)

This formula is only a model; the actual formula used in computations is more complicated,
including filters and multiple-level normalization terms. The target function is modular, and
can be split into the sum:

TF =
∑

k

TF k =
∑
j,k

TF k
j (3.2)

where TF k
j is the target function relative to αj and the dataset Dk , and TF k = ∑

j TF k
j . We

have already shown in section 2.2 that if the measurements are exact, there is a unique solution
� up to equivalent sets of configurations. By continuity, if the experimental error is small
enough, i.e. δ̃

pcs

i and δ̃rdc
ab are close enough to δ

pcs

i and δrdc
ab , the point �̃ where TF reaches

its absolute minimum is close to �. The question of how large the experimental error can be
while preserving the fact that �̃ ∼ � is not trivial. It will be addressed in the remark following
proposition 2.3.

3.2. Numerical solution of the multiple metals problem

For each dataset Dk , a numerical solution may be determined using any standard minimization
technique. This configuration, giving the minimum of the TF, is represented by rigid motions(
ak

j , t
k
j

)
, j = 1, . . . , n which bring the αj from the lab system to the Mk metal system, and by

two values �χk
ax and �χk

rh. The critical point of this approach is joining these configurations
in a single setting, and then determining the best match to be used as a starting point for a local
minimization technique. A possible strategy is introduced in this section, its properties are
described in section 3.3. In the following we will use lower case letters to denote the rotations
and translations found with a minimization relative to a single metal, and capital letters to
denote the transformations needed to implement the multiple metals setting.

3.2.1. Multiple metals setting. We have used the following variables to describe a set of
configurations, as presented by the following diagram:

α1
(A1

1,T
1

1 )−−−−−−→
α2

(A1
2,T

1
2 )−−−−−−→

· · ·
αn

(A1
n,T

1
n )−−−−−−→




M1




(A12,T 12)−−−−−−→M2

· · ·
(A1m,T 1m)−−−−−−→Mm.

Let Dk , k = 1, . . . ,m be the datasets involved. Fix an arbitrary D1. Then the positions of
αj with respect to M1 are defined by rigid motions

(
a1

j , t
1
j

)
. Let

(
A1

j , T
1
j

) = (
a1

j , t
1
j

)
. Now

consider any other dataset Dk . The relative positions of the αj are already defined by
(
A1

j , T
1
j

)
,

and cannot be changed since only one correct spatial arrangement exists. The metal tensor Mk

must be determined, since it does not depend on M1. The tensor Mk may be represented by
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means of a rigid motion (A1k, T 1k) bringing the metal system M1 to the metal system Mk. In
other words, an atom belonging to αj with position vector x in the lab frame has coordinates
A1

j

(
x − T 1

j

)
in the system M1, and has coordinates

A1k
(
A1

j

(
x − T 1

j

) − T 1k
)

(3.3)

in the system Mk (see the diagram). Formula (3.3) holds even for k = 1 by defining A11 as the
identity matrix and T 11 as the zero vector. Two or more metal ions may be substituted in the
same location (this is an a priori piece of information), so there may be some constraints on
the T 1k . This suggests the following ordering of the Dk . We can suppose that the Dk relative
to a single location are grouped together, so we can define Gl = {Dl1 ,Dl1+1, . . . ,Dl2 }. Gl

is the group of datasets relative to a single location index l, l = 1, . . . , L, 1 � L � m. For
each dataset Dk , k > 1, there is a rotation A1k . For each group Gl , l > 1, there is a different
translation, though for consistency the T 1k will still be identified by the dataset index. For
each Ds ∈ Gl , T 1s is the same vector. There are hence 6n + 2 variables for the first dataset,
and each successive dataset Dk adds five variables (a rotation and two coefficients) if Mk is in
an already defined location, or eight variables (a rotation, a translation and two coefficients) if
Mk is in a new position.

3.2.2. Selection of the best matching configurations. Suppose that the rigid motions
obtained from the single metal minimizations are found with exact data. The corresponding
configurations can be superimposed if and only if, for each αj and for each dataset, a consistent
choice of the symmetries sτ is selected, as shown by the proof of theorem 2.1. In the case of
noisy data, the problem is to find the best matching positions for αj , considering all possible
symmetries. There are arbitrary choices here; the strategy we select is the following.

(i) Selection of the tkj . The first step consists in selecting a subgroup of the tkj . Let

Di1 ,Di2 ∈ Gl . Then in principle t
i1
j = t

i2
j , since the datasets are relative to the same

location. With experimental data they may be different. However, this is seldom a problem
because in practice the tkj are very well determined by the single metal minimization. Let

Dk ∈ Gl . Then we substitute tkj with t
il
j where il is the index relative to the Ds ∈ Gl

having minimal target function value.
(ii) Definition of the transformations (A1k, T 1k). For each k > 1, we choose n definitions

for (A1k, T 1k) in the following way. Fix an index i. Imposing the consistency of the
configurations on the single αi and applying (3.3), we get

A1k
(
a1

i

(
x − t1

i

) − T 1k
) = ak

i

(
x − tki

)
. (3.4)

Solving (3.4) gives

A1k = ak
i

(
a1

i

)∗
T 1k = a1

i

(
tki − t1

i

)
(3.5)

where
(
a1

i

)∗
is the inverse of a1

i . The choice of the index i is arbitrary, so there are n
possible choices for (A1k, T 1k).

(iii) Definitions of A1
j , T

1
j . As a final step we have to define A1

j , T 1
j , j = 1, . . . , n to find

a complete set of initial values. Note that, due to step (i), the t1
j may be different from

the values coming from stage one. We must now consider symmetries, because by
section 2.1 the ak

j are defined up to symmetries. Fix an αj and consider sτ a
1
j . This

does not change TF 1, but it changes TF k, k > 1. Replacing a1
j with sτ a

1
j in (3.4) does

not preserve the equality sign, because the rotations A1ksτ a
1
j and sτ a

k
j do not coincide

even when A1k = ak
i

(
a1

i

)∗
is defined with i = j. Equating the two rotations would
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imply ak
j

(
a1

j

)∗
sτ = sτ a

k
j

(
a1

j

)∗
but in general the symmetry sτ does not commute with the

rotation ak
j

(
a1

j

)∗
unless τ = 0. This accounts for four possible choices for A1

j = sτ a
1
j ,

τ = 0, . . . , 3. We also consider the four symmetries with respect to Dk . We need to find
A1

j such that, when substituted in (3.4), the resulting transformation is a symmetry with
respect to Mk, i.e.

A1k
(
A1

j

(
x − T 1

j

) − T 1k
) = sτ a

k
j

(
x − tkj

)
. (3.6)

Solving (3.6) we find A1
j = (A1k)∗sτ a

k
j , T 1

j = tkj − (
sτ a

k
j

)∗
A1kT 1k. We thus consider the

following eight choices for A1
j , T

1
j :{

A1
j = sτ a

1
j T 1

j = t1
j τ = 0, . . . , 3

A1
j = (A1k)∗sτ a

k
j T 1

j = tkj − (
sτ a

k
j

)∗
A1kT 1k τ = 0, . . . , 3.

(3.7)

3.3. Mathematical properties of the merging strategy

In this section some mathematical properties of the numerical approach are presented. The
first two propositions justify the arbitrary choices made in the merging strategy. The rather
technical proposition 2.3 has a practical consequence explained in the final remark of this
section. For simplicity, we will assume in the following that the metal ions are in the same
location, that is T 1k = 0.

Let us define Pk
τ = {(

sτ1a
k
i

)(
sτ2a

1
i

)∗
, i = 1, . . . , n, τ1, τ2 = 0, . . . , 3

}
as the set of

transformations from M1 to Mk which can be found by combining the rotations of stage one
with symmetries. Let Pk = {

ak
i

(
a1

i

)∗
, i = 1, . . . , n

}
be the subset of Pk

τ , which is found
when symmetries are neglected.

Proposition 3.1. For each choice of A1k in Pk
τ there is a suitable choice of A1k in Pk giving

the same value of TF.

Proof. For simplicity we drop the subscript from sτ and merge any adjacent group of
symmetries. Let A1

j = sa1
j as in (3.7a) and let A1k = sak

i

(
sa1

i

)∗
. Then TF 1 is evaluated

on sa1
j

(
x − t1

j

)
and TF k on sak

i

(
sa1

i

)∗
sa1

j

(
x − t1

j

)
, i.e. on sak

i

(
a1

i

)∗
sa1

j

(
x − t1

j

)
. Now take

A1k = ak
i

(
a1

i

)∗ ∈ Pk . With this choice TF 1 does not change, and TF k is evaluated on
ak

i

(
a1

i

)∗
sa1

j

(
x − t1

j

)
. The missing final symmetry does not change the value of TF k , so the

value of TF is the same. Now let A1
j = (A1k)∗sak

j as in (3.7b), and let A1k = sak
i

(
sa1

i

)∗
.

Then TF 1 is evaluated on sa1
i

(
ak

i

)∗
sak

j

(
x − t1

j

)
and TF k on A1k(A1k)∗sak

j = sak
j . Choosing

A1k = ak
i

(
a1

i

)∗ ∈ Pk does not change TF k . In fact, TF 1 is evaluated on a1
i

(
ak

i

)∗
sak

j

(
x − t1

j

)
and again the missing final symmetry does not change the value. �

The previous proposition justifies the use of Pk in (3.5), thus reducing the possible choices
for the transformations A1k.

The first dataset D1 in our strategy has the role of the base dataset. The choice of D1,
however, does not affect the values of the TF, as shown by proposition 3.2. Let D1 and D2

be two datasets, and suppose B2
j , B21 are the transformations defined taking D2 as the base

dataset. More precisely

B21 = a1
i

(
a2

i

)∗
i = 1, . . . , n

and {
B2

j = sτ a
2
j τ = 0, . . . , 3

B2
j = (B21)∗sτ a

1
j τ = 0, . . . , 3.

(3.8)
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Proposition 3.2. For each choice of A1
j and A12 there is a suitable choice of B2

j and B21

giving the same value of TF.

Proof. Let A1
j = sa1

j as in (3.7a) and A12 = a2
i

(
a1

i

)∗
. Then TF 1 is evaluated on sa1

j

(
x−t1

j

)
and

TF 2 on a2
i

(
a1

i

)∗
sa1

j

(
x−t1

j

)
. Take B21 = a1

i

(
a2

i

)∗
and B2

j = (B21)∗sa1
j as in (3.8b). Then TF 1 is

evaluated on B21(B21)∗sa1
j

(
x−t1

j

) = sa1
j

(
x−t1

j

)
and TF 2 on B2

j

(
x−t1

j

) = a2
i

(
a1

i

)∗
sa1

j

(
x−t1

j

)
,

so TF is the same. In the same way if A1
j is drawn from (3.7b) B2

j should be defined as
in (3.8a). �

In the presence of exact data, there is always a choice of sτ in (3.7a) and one in (3.7b) such
that TF = 0, as shown by the following proposition.

Proposition 3.3. Suppose TF k
j = 0 on sak

j

(
x − tkj

)
. Then both when A1

j is defined as in (3.7a)
and as in (3.7b) there is a point where TF = 0.

Proof. The fact that TF k
j = 0 on sak

j

(
x − tkj

)
implies that each αj is correctly positioned (up to

a symmetry) both by D1 and by D2. This means that t1
j = t2

j and there exists a single rotation
R, up to symmetries, bringing the correctly positioned structural elements in the system M1 to
the correctly positioned structural elements in the system M2. Then sa2

j = Rsa1
j ∀j , so that

R = sa2
j

(
sa1

j

)∗
and R ∈ P 2

τ . In other words, A12 = a2
i

(
a1

i

)∗
(again up to symmetries) does

not depend on the particular index i chosen. Fix an index j and take A1
j as in (3.7a). Then by

hypothesis, ∀sτ TF 1
j = 0 on sτ a

1
j

(
x − t1

j

)
. We can replace A12 = a2

i

(
a1

i

)∗
with sa2

j

(
sa1

j

)∗
.

This means that TF 2
j is evaluated on

sa2
j

(
a1

j

)∗
s∗sτ a

1
j

(
x − t1

j

)
. (3.9)

The symmetry s∗ depends on j, but we can choose sτ to be s∗ so that s∗sτ cancels and (3.9)
reduces to sa2

j

(
x− t1

j

) = sa2
j

(
x− t2

j

)
and here, by hypothesis, TF 2

j = 0. So far we have shown
that for a fixed j when A1

j = sτ a
1
j there is a choice of the symmetry sτ such that TF 1

j +TF 2
j = 0.

This argument can be repeated for all the αj since sτ can be chosen independently for each
j, thus obtaining a set of symmetries for which TF = 0. A similar proof can be carried out
when A1

j is as in (3.7b). In this case, for each choice of sτ we have that TF 2
j is evaluated on

A12(A12)∗sτ a
2
j

(
x − t1

j

) = sτ a
2
j

(
x − t2

j

)
and hence is 0. By substituting A1k with sa2

j

(
sa1

j

)∗

we find that TF 1
j is evaluated on sa1

j

(
a2

j

)∗
s∗sτ a

2
j

(
x − t2

j

)
, so there is again a choice of sτ such

that TF 2
j = 0. �

Remark. The previous proposition shows a coupling between the correct symmetry of (3.7a)
and the correct symmetry of (3.7b). If the experimental error is small, by continuity arguments,
it is possible to trace the correct symmetry as that having the smallest TF value. Because of
the coupling, this is true both for (3.7a) and (3.7b). Tracing this agreement is an independent
way of checking whether the experimental error may allow a reliable reconstruction of the
positions of the protein structural elements. We develop this argument in the example of
section 4.

4. An example

To test the efficiency of the numerical procedure introduced in the previous section on a
synthetic model, a Fortran program has been developed [20]. Three rigid protein structural
elements (or substructures) are assumed to be known. To show that the program works
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Figure 3. True model (thick line) and reconstruction (thin line) of three substructures. The dot
represents the position of the metal ion.

independently on the type and on the length, we have selected an α-helix (with 12 amino acids),
a β-sheet (with four amino acids) and a coil fragment of 19 amino acids. The three substructures
and a metal ion were placed in a suitable way as reported in figure 3.

The datasets included PCS data for N, NH, C, Cα, Hα, Cβ (if applicable), and RDC data for
the N–NH and Cα–Hα couples, using two paramagnetic metal ions (Dy3+ and Yb3+) substituted
in the same binding site with relative magnetic tensor orientation as experimentally found in
[8]. The magnetic susceptibility anisotropies were �χax = 34.7 × 10−32 m3 and �χrh =
−20.3 × 10−32 m3 for Dy3+, and �χax = 8.26 × 10−32 m3 and �χrh = −5.84 × 10−32 m3

for Yb3+. The datasets were generated by using (1.1) and (1.2) and the atom coordinates of
the known substructures.

With exact data the program succeeded in providing the correct tensors and relative
substructure orientations perfectly. We simulated an experimental error by adding an absolute
and a relative component, with uniform distribution. For PCS we used an error of ±0.5 ppm
±10% and for RDC an error of ±0.5 Hz, which are reasonable estimates of experimental
measurement errors. To analyse the quality of the reconstruction, we compared the smallest
target function solution found by the program and the model used to generate the datasets. We
got a root-mean-square deviation (RMSD) for the backbone of 0.4 Å. We then raised the error
to ±0.8 ppm ±16% for PCS and ±0.8 Hz for RDC, still getting a good reconstruction with
an RMSD of 0.4 Å. This shows the stability of the solution, thus making us confident that the
program is efficient if the substructures are known exactly. With a larger error the program
succeeded in reconstructing the position of the α-helix and of the coil, but not of the β-sheet.
This should not be surprising, since the β-sheet is the substructure composed of the smallest
number of residuals.

Of course there is no a priori way of predicting the accuracy of the final reconstruction.
A tempting way is to analyse the agreement of data coming from single metal problems. This
can be done during the selection of the best matching configuration. For each substructure,
we considered the corresponding TF k

j values obtained by using (3.7), k = 1, 2, j = 1, 2, 3.
We defined ρk

j as the quotient of the best and the second best values of TF k
j . Figure 4 shows

a plot of the harmonic mean ρj of ρ1
j and ρ2

j (divided by the number of residuals) versus
the experimental error. We point out that there is a jump in ρ2 corresponding to wrong
reconstruction of the β-sheet.

To test the behaviour of the program with non-exact substructure models, we added an
error on the coordinates of the atoms, still using for PCS an error of ±0.5 ppm ±10% and for
RDC an error of ±0.5 Hz. The atoms were moved randomly in a ball of radius 0.4 Å centred
on the correct position. The 20 solutions with the smallest values of the TF were compared
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Figure 5. Normalized TF versus RMSD in the reconstructed solutions.

with the correct structure by calculating their RMSDs. The solution with the smallest TF has
an RMSD equal to 0.5 Å and is shown in figure 3. Figure 5 reports the plot of the normalized
TF as a function of the RMSD, showing that the solution with the smallest TF and smaller
RMSD is well separated with respect to incorrect solutions with larger TF and RMSD. This is
the upper limit for the error in the atom coordinates we managed to achieve in our example,
still getting a good reconstruction.

Applications of the present approach to real proteins (cytochrome b562 and calbindin D9k)
have been performed and reported in [20]. In the latter, it was shown that the relative position
of the four α-helices constituting each protein can be determined using theoretical α-helical
models and data calculated from the real substructures.
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5. Conclusions

This paper is aimed at providing a rigorous mathematical analysis of the commonly accepted
idea that it is possible to reconstruct the position of rigid structural elements using paramagnetic
data (PCS and RDC) only. We have shown that there are some conditions to be fulfilled to
avoid degeneracy in the determination of the paramagnetic tensor and of the position of
the metal ions. These conditions are in practice always verified; however, they may cause
numerical instabilities close to these exceptional cases. We have then focused on the well-
known symmetry problem in the determination of the principal axes of the paramagnetic
tensor. We stated in theorem 2.1 the precise conditions to remove this degeneracy using
multiple metal ions. When the tensors are almost collinear (a condition which is often met
in practice), experimental errors cause problems in the numerical reconstruction. A strategy
to overcome these difficulties has been presented in section 3, based on the best agreement
amongst the multiple solutions of each single metal problem.

The length of the rigid structural elements is a key point to obtain a good reconstruction
due to the presence of experimental errors, as shown by the example of section 4. We feel
that this strategy may also be useful when the rigid structural elements are shortened to single
amino acids, although problems may arise if their correct position is not found due to the small
number of error-affected data.
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Appendix. Analysis of the non-uniqueness situation for the location of the metal

Fix a metal ion M1 at the origin and let (x̃, ỹ, z̃) be a second location M2 for the same metal ion.
We assume that χ has already been obtained using RDC data. Then the anisotropy coefficients
�χax,�χrh are known and we can use the diagonal form of the tensor. Let r1 =

√
x2 + y2 + z2

and r2 =
√

(x − x̃)2 + (y − ỹ)2 + (z − z̃)2 be the distances from the locations of the metal.
Using (1.1), an atom in position (x, y, z) will give the same δ

pcs

i with respect to M1 and M2 if
and only if (x, y, z) satisfy the following equation:

�χax(2z2 − x2 − y2) + �χrh(x
2 − y2)

r5
1

= �χax(2(z − z̃)2 − (x − x̃)2 − (y − ỹ)2) + �χrh((x − x̃)2 − (y − ỹ)2)

r5
2

.

(A1)

Equation (A1) represents a manifold in R
3. If all atoms in αj belong to this manifold, there is

no uniqueness for the position of the metal. To prove that (A1) is not empty, let

k = r2
1

/
r2

2 k ∈ [0, +∞]. (A2)

Each point in R
3 defines a unique value k in the previous formula. Using (A2) in (A1) yields

k5/2[�χax(2z2 − x2 − y2) + �χrh(x
2 − y2)]

= �χax(2(z − z̃)2 − (x − x̃)2 − (y − ỹ)2) + �χrh((x − x̃)2 − (y − ỹ)2). (A3)
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In the case k = 1, (A3) is the plane of the points with equal distance from M1 and M2. If
k �= 1, (A3) is a quadric whose type depends on �χax,�χrh. Rewriting (A2) and (A3) in
normal form we get{(

x + k
1−k

x̃
)2

+
(
y + k

1−k
ỹ
)2

+
(
z + k

1−k
z̃
)2 = k

(1−k)2 (x̃
2 + ỹ2 + z̃2) (A4a)

cx

(
x − x̃

1−k5/2

)2
+ cy

(
y − ỹ

1−k5/2

)2
+ cz

(
z − z̃

1−k5/2

)2 = k5/2

(1−k5/2)2 (cx x̃
2 + cyỹ

2 + czz̃
2) (A4b)

where 


cx = �χrh − �χax

cy = −�χrh − �χax

cz = 2�χax.

Since tr(χ) = 0 and λ3 is the largest eigenvalue, �χax = 3λ3/2 > 0, so cz is positive.
Moreover at least one of cx , cy is negative, so (A4b) represents a family of hyperboloids. The
number (one or two) of sheets depends on the sign of � = cxx̃

2 + cyỹ
2 + czz̃

2. In the case
� = 0, the hyperboloids degenerate to a family of cones with vertex on the line l containing
the vector M1M2, and with l on their surfaces. The parametric equations of l are


x = t x̃

y = t ỹ

z = t z̃.

The intersections of l and the surfaces defined by (A4a) are obtained for t±a = k±√
k

1−k
, and

those of l and (A4b) for t±b = 1±√
k

1−k5/2 . We want to prove that, for a fixed k, (A4a) and (A4b)
intersect in a curve. Suppose k ∈ [0, 1]. It is enough to show that t−a < t±b < t+

a for at least
one of the two values of t±b because (A4a) is compact and (A4b) is not. Solving for k we
determine an interval [k̄, 1], k̄ ∼ 0.147. In the case k > 1, by changing the roles of r1 and
r2, we get the reciprocal interval [1, 1/k̄]. Then if k ∈ [k̄, 1/k̄] (A4a) and (A4b) intersect in a
curve and every element of (A3) is a non-empty manifold.
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